
On linear separability of random subsets of hypercube vertices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 L211

(http://iopscience.iop.org/0305-4470/24/4/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) LZlI-LZ13. Printed in  the UK 

LElTER TO THE EDITOR 

On linear separability of random subsets of hypercube vertices 

Marco Budinich 
Dipartimento di Fisiea dell’Universitl di Tneste and Istituto Nazionale Fisica Nucleare 
Trieste, Via Valerio 2, 1-34127 Trieste, Italy 

Received 19 November 1990 

Abstract. The classical Cover results on linear separability of points in Rd are a milestone 
in neural network theory. Nevertheless they are not valid for digital input networks because 
in this case the points are not, in general position. vertices o f a  d-dimensional hypercube. 
I show here that for large d all Cover findings can be extended to this case. It is also 
shown that for n < O((d + I)”*) the number o f  linear separations of n random hypercube 
vertices tends to that of n points in general position. 

Feed-forward neural networks have frequently solicited studies on geometrical proper- 
ties of their input space. 

The values of the d input neurons can be thought of as coordinates of d-dimensional 
space Rd and then the set of all possible inputs is a subset of R“ (the pattern space). 
In the frequent case of digital inputs (0, 1 or * I )  the pattern space shrinks to the set 
of the vertices of the d-dimensional hypercube Q d  c R“. 

‘The seminai Cover papert  i l j  showed many interesting properties for sets of n 
points in general position in Rd. The points are in general position if any k-tuple 
( k <  d + 1) of them is linearly independent. 

Cover showed that the probability P ( n ,  d )  that n random points in general position 
in R” are linearly separable ist 

-. 

d ( n - 1 1  
2 1  

number of linear separations I=” \ k ) 
(1 )  - P ( n ,  d )  = - 

total number of separations 2” 

From this formula Cover derives all of his interesting results directly applicable to 
one-layer feed-forward neural networks (perceptrons). The more important are (all 
for d +a?): 

( a )  the probability of linear separability of n random points falls to 0 when > 2( d + 1) 

P(  n, d ) +  @(-x) f o r d - m  and n = 2 ( d + l ) + x m  

where @(-x) is the cumulative normal distribution; 
( b )  the perceptron ‘capacity’ is 2 ( d +  11, i.e. two random patterns per weight; 
( c )  !he p:&abi!ity of ‘nnz;an?biguo.s gc”era!iza:ioz’-‘Q if < ? ( d  + 1) .#here 2 is  

the number of patterns already ‘learned’ by the network. 

t For some more w e n t  works with a similar approach see e.g. [2] and [3]. 
% This is the probability that exists an hyperplane separating a random partition of the n points i n  two sets. 
The I I  points are supposed IO he in general position in  R”. For more precise definitions see [I]. 
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If the pattern space is the set of vertices of Q d  (a very common situation in neural 
networks) equation ( 1 )  and all subsequent results are no longer valid. This happens 
because the points are usually not in general positi0n.t 

In what follows it is shown that for the identically defined probability H(n, d )  that 
n random vertices of Qd are linearly separable, 

H(n, d ) +  p(n, d )  w h e n d + m  ( 2 )  

hoids, which extends ( i )  and reiated results to subsets of vertices of Qd when d + m 
(the demonstration is similar to that used by Fiiredi in [4]). 

Let C,,(n, d)  and C(n, d )  be the number of linear separations of a set II, of n 
points in R" respectively with and without the hypothesis of general position. Fiiredi 
[4] obtains the following bounds from the geometrical theorem of Winder [ 5 ]  

d + l  

k = 2  
C,,(n, d j - 2 ukjii., d )  6 C (  n, d )  6 CsD( n, d j  (3) 

where u,(II., d )  is the number of linearly dependent k-tuples of points of the set II.. 
To pass from (3) to the probabilities of (1) and (2) we have to average the quantities 

C(n,  d )  and a,(II,, d )  over all the possible II. and then to divide by the number of 
possible partitions, i.e. 2". With the hypothesis that the n points are vertices of Q" we 
nave (y )  possiiiie choices for the set ii" so (3) gives 

The quantity 

is, by definition, the probability that k points out of the n are not in general position. 
Since the points are vertices of Qd this probability is bounded by the probability that 
a (d  + 1) x (d  + 1) random *I matrix is singular and this probability is known [6] to 
tend to O( 1 / m )  when d + CO so we have 

With this relation, observing that all quantities are positive, (4) gives 

and being the fraction limited between 0 and 1 for every n this proves (2). 
A similar argument can be used to study the number of linear separations of vertices 

of a hypercube#. Intuitively it is known that for n random hypercube vertices two 
different cases exist. If n<< d hypercube symmetries are irrelevant and the number of 
linear separations will equal that of n points in general position while if n = 2 d  
symmetries play a crucial role in diminishing the number of linear separations. In what 

?The d dimensional hypercube is a highly symmetric figure where far example no 2 d  points in general 
position exist or where all points with a given number o f  1's lay on just one hyperplane. 
$1" the parr a lot of &on has been dedicated to this problem, i.e. to count the number of thresholding 
functions (see e.g. [SI). 
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follows the condition is proven that n has to satisfy (in the large d limit) to remain 
in the case where hypercube symmetries are marginal. 

Starting from (3) we obtain 

where ( C ( n ,  a')} is the average value of C(n,  d ) .  Using the definition of C,,(n, d ) ,  ( I )  
and ( 5 )  

and from the asymptotic properties of this fraction for n > 2 ( d  + 1) and d + m we get 

which proves that if n < O ( ( d +  1)"') the average number of separating hyperplanes 
of n vertices of Q d  tends to C,,(n, d). 

All this shows that as long as n < O(( d + 1)3/2) while d+m, hypercube symmetries 
are not important for the average number of separating hyperplanes. From this it 
follows that the probability of linear separability around n = 2(d + 1) is not altered by  
hypercube symmetries. Both these properties derive from the result that the probability 
of a d x d binary matrix being singular is O( 1 / d )  when d -+W. 

A final word of caution about the hypothesis of randomness in the choice of the 
n points that underlies all these results. In real life cases the patterns are highly 
corre!l!ed 3mong thc!nse!ves and these res??!!s do no! app!y direa!y 
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